International Baccalaureate ${ }^{\oplus}$
Baccalauréat International
Bachillerato Internacional

22116110

CHEMISTRY

STANDARD LEVEL

PAPER 1

Monday 9 May 2011 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1. What is the sum of all coefficients when the following equation is balanced using the smallest possible whole numbers?

$$
\mathrm{C}{2} \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow _\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

A. 5
B. 7
C. 11
D. 13
2. 1.7 g of $\mathrm{NaNO}_{3}\left(M_{\mathrm{r}}=85\right)$ is dissolved in water to prepare $0.20 \mathrm{dm}^{3}$ of solution. What is the concentration of the resulting solution in $\mathrm{mol} \mathrm{dm}^{-3}$?
A. 0.01
B. 0.1
C. 0.2
D. 1.0
3. How many molecules are present in a drop of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, of mass $2.3 \times 10^{-3} \mathrm{~g}$? ($L=6.0 \times 10^{23} \mathrm{~mol}^{-1}$)
A. 3.0×10^{19}
B. 3.0×10^{20}
C. 6.0×10^{20}
D. 6.0×10^{26}
4. Which sample has the greatest mass?
A. 1 mol of SO_{2}
B. 2 mol of $\mathrm{N}_{2} \mathrm{O}$
C. 2 mol of Ar
D. 4 mol of NH_{3}
5. The relative molecular mass of a gas is 56 and its empirical formula is CH_{2}. What is the molecular formula of the gas?
A. CH_{2}
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{C}_{3} \mathrm{H}_{6}$
D. $\mathrm{C}_{4} \mathrm{H}_{8}$
6. Which statement about the numbers of protons, electrons and neutrons in an atom is always correct?
A. The number of neutrons minus the number of electrons is zero.
B. The number of protons plus the number of neutrons equals the number of electrons.
C. The number of protons equals the number of electrons.
D. The number of neutrons equals the number of protons.
7. Which property generally decreases across period 3?
A. Atomic number
B. Electronegativity
C. Atomic radius
D. First ionization energy
8. Which property increases down group 1?
A. First ionization energy
B. Melting point
C. Reactivity
D. Electronegativity
9. What is the correct Lewis structure for hypochlorous acid, a compound containing chlorine, hydrogen and oxygen?
A. $\quad \underset{\sim}{\mathrm{Cl}}: \stackrel{\ddot{\mathrm{O}}}{. .}: \mathrm{H}$:
B. $\quad \underset{\mathrm{Cl}}{. .}: \mathrm{H}: \ddot{\mathrm{O}}:$
C. $\quad: \quad \ddot{\mathrm{C}}: \ddot{\mathrm{O}}: \cdot \mathrm{H}$
D. $\quad \ddot{\mathrm{O}}: \ddot{\mathrm{Cl}}: \mathrm{H}$
10. Which compound forms hydrogen bonds in the liquid state?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
B. CHCl_{3}
C. $\mathrm{CH}_{3} \mathrm{CHO}$
D. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
11. How do the bond angles in $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ compare?
A. $\mathrm{CH}_{4}=\mathrm{NH}_{3}=\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CH}_{4}$
12. Which combination of the characteristics of element X, a metal, and element Y, a non metal, is most likely to lead to ionic bonding?

	\mathbf{X}	\mathbf{Y}
A.	low ionization energy	high electronegativity value
B.	low ionization energy	low electronegativity value
C.	high ionization energy	high electronegativity value
D.	high ionization energy	low electronegativity value

13. Which particles are responsible for electrical conductivity in metals?
A. Anions
B. Cations
C. Electrons
D. Protons
14. When $100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ is mixed with $100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$, the temperature of the resulting solution increases by $5.0^{\circ} \mathrm{C}$. What will be the temperature change, in ${ }^{\circ} \mathrm{C}$, when $50 \mathrm{~cm}^{3}$ of these two solutions are mixed?
A. 2.5
B. 5.0
C. 10
D. 20
15. Which statement about bonding is correct?
A. Bond breaking is endothermic and requires energy.
B. Bond breaking is endothermic and releases energy.
C. Bond making is exothermic and requires energy.
D. Bond making is endothermic and releases energy.
16. Consider the following reactions.

$$
\begin{array}{ll}
\mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CuO}(\mathrm{~s}) & \Delta H^{\ominus}=-144 \mathrm{~kJ} \\
\mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{CuO}(\mathrm{~s}) & \Delta H^{\ominus}=+11 \mathrm{~kJ}
\end{array}
$$

What is the value of ΔH^{\ominus}, in kJ , for this reaction?

$$
\mathrm{Cu}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuO}(\mathrm{~s})
$$

A. $-144+11$
B. $+144-11$
C. $-144-11$
D. $+144+11$
17. Which statements describe the action of a catalyst?
I. It does not alter the ΔH for a reaction.
II. It increases the E_{a} for the reaction.
III. It alters the mechanism (pathway) of a reaction.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
18. Consider the reaction between gaseous iodine and gaseous hydrogen.

$$
\mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \Delta H^{\ominus}=-9 \mathrm{~kJ}
$$

Why do some collisions between iodine and hydrogen not result in the formation of the product?
A. The I_{2} and H_{2} molecules do not have sufficient energy.
B. The system is in equilibrium.
C. The temperature of the system is too high.
D. The activation energy for this reaction is very low.
19. The equilibrium between nitrogen dioxide, NO_{2}, and dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, is shown below.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad K_{\mathrm{c}}=0.01
$$

What happens when the volume of a mixture at equilibrium is decreased at a constant temperature?
I. The value of K_{c} increases
II. More $\mathrm{N}_{2} \mathrm{O}_{4}$ is formed
III. The ratio of $\frac{\left[\mathrm{NO}_{2}\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}$ decreases
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
20. Which statement about chemical equilibria implies they are dynamic?
A. The position of equilibrium constantly changes.
B. The rates of forward and backward reactions change.
C. The reactants and products continue to react.
D. The concentrations of the reactants and products continue to change.
21. Which statement explains why ammonia can act as a Lewis base?
A. Ammonia can donate a lone pair of electrons.
B. Ammonia can accept a lone pair of electrons.
C. Ammonia can donate a proton.
D. Ammonia can accept a proton.
22. Consider the equilibrium below.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Which species represent a conjugate acid-base pair?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+}$
23. Which species could be reduced to form NO_{2} ?
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO_{3}^{-}
C. HNO_{2}
D. NO
24. Consider the overall reaction taking place in a voltaic cell.

$$
\mathrm{Ag}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{Zn}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})
$$

What is the role of zinc in the cell?
A. The positive electrode and the oxidizing agent.
B. The positive electrode and the reducing agent.
C. The negative electrode and the oxidizing agent.
D. The negative electrode and the reducing agent.
25. What happens to the manganese in the following reaction?

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+5 \mathrm{O}_{2}(\mathrm{~g})
$$

A. It is oxidized and its oxidation number increases.
B. It is oxidized and its oxidation number decreases.
C. It is reduced and its oxidation number increases.
D. It is reduced and its oxidation number decreases.
26. Which of the following statements about alkenes is not correct?
A. They have reactive double bonds.
B. They can form addition polymers.
C. They react mainly by substitution.
D. They can react with water to form alcohols.
27. What is the type of mechanism and an important feature of the reaction between $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}$ and aqueous NaOH ?
A.

Mechanism	Feature
$\mathrm{S}_{\mathrm{N}} 1$	a transition state
$\mathrm{S}_{\mathrm{N}} 1$	an intermediate
$\mathrm{S}_{\mathrm{N}} 2$	a transition state
$\mathrm{S}_{\mathrm{N}} 2$	an intermediate

28. Which of the following are isomers of pentane?
I. 2-methylpentane
II. methylbutane
III. dimethylpropane
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
29. Which of the following pairs are members of the same homologous series?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
B. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
30. A burette reading is recorded as $27.70 \pm 0.05 \mathrm{~cm}^{3}$. Which of the following could be the actual value?
I. $\quad 27.68 \mathrm{~cm}^{3}$
II. $\quad 27.78 \mathrm{~cm}^{3}$
III. $\quad 27.74 \mathrm{~cm}^{3}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
